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Numerical construction of ‘‘optimal’’ nonoscillating amplitude and phase functions
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A numerical recipe for the construction of nonoscillating amplitude and phase functions for potentials with
a single minimum is given. We give different examples illustrating the recipe, showing the usefulness of the
procedure for the construction of basis functions in bound-state scattering processes, such as those described by
quantum defect theory. The resulting amplitude and accumulated phase functions are coined as ‘‘optimal’’
nonoscillating~as a function of the space and energy variables! because they are the counterpart for the
quantum problem of the classical action for the analog semiclassical problem.
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INTRODUCTION

The interest in amplitude-phase methods for solv
bound-state scattering problems is well known@1–4#. The
advantage of using the amplitude-phase formulation is
the oscillatory character of the wave functions is obtain
from amplitude and phase functions@respectively, denoted
a(x,E) and f(x,E)# which are better behaved~ideally,
nonoscillating! in terms of the space and energy variabl
Let c(x,E) be a solution of the Schro¨dinger equation

]x
2c~x!1k2~x!c~x!50, ~1!

with k2(x)52@E2V(x)#, where V(x) is a potential well
with a single minimum defined on an interval ]s1 ,s2@ . The
samewave function may be written as

c~x!5a~x!sin@f~x!# ~2!

in terms of any set of functionsa and f solutions of the
so-called Milne equation@5#

]x
2a~x!1k2~x!a~x!5a23~x!, ~3!

with a22(x)5]xf(x). Although the direct integration of Eq
~3! has been used as an efficient manner of solving
Schrödinger equation, amplitude-phase methods have ma
been employed when a particle is subjected to distinct sh
range and long-range interactions, as is the case for
atomic or molecular Rydberg electron. Thena and f are
often obtained from known solutions of Eq.~1! in the long-
range potential; the total wave function including the sho
range potential is at last determined froma, f, and the
relevant energy-dependent phase shifts, provided these f
tions are smooth. The problem is that for arbitrary bound
conditions, a is highly oscillatory, and the quantityb
[f(s2)2f(s1) known as the accumulated phase and wh
defines the normalization ofc oscillates as a function ofE.
This is why there has been renewed interest in devising
merical methods aiming at minimizing these oscillatio
@6–10#. This is also important in other problems employin
the amplitude-phase formalism, such as the parametric ti
dependent oscillator in classical mechanics@11#, and is of
1063-651X/2002/66~3!/037702~4!/$20.00 66 0377
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potential interest to other areas of physics where the M
equation appears~e.g., in the analysis of supersymmetr
families of damping modes@12#, or in studies of the gravi-
tational equilibrium of stellar structures@13#!.

The present work introduces a numerical method v
simple to implement, which leads to the construction of o
timal amplitude and phase functions. By ‘‘optimal’’ we mea
here that the amplitude function is nonoscillating in the sp
variable and that the accumulated phase is a monotonic f
tion of the energy. These nonoscillating properties stem fr
a remarkable feature, recently shown by one of us@14#: there
is only a single functionfo(x,E) which in the limit \→0
tends to the reduced classical actionS(x,E) @and concur-
rently ao(x,E)→k21/2(x,E)#. ao is then a nonoscillating
function ofx, andbo is a monotonic function ofE. For other
choices off or a, highly oscillatory semiclassical phase an
amplitude functionsf̃ and ã are obtained when the limit\
→0 is taken. We give below a recipe for the practical co
struction of ao and fo , after recalling the mathematica
framework. We then work out this recipe in three differe
cases, for which the implementation of the method sligh
differs.

BACKGROUND

We briefly review for reference the amplitude-phase f
mulation within the context of Ermakov systems@Eqs. ~1!
and ~3! form together a system known as an uncoupled
makov system; for details we refer the reader to Refs.@8,14#
and references therein#. Labelingu1 andu2 two independent
solutions of Eq. ~1! with Wronskian W[(]xu1)u2
2u1(]xu2), the general solution of Eq.~3! takes the form

a~x!5F S 1

2I
12Ic2Du1

2~x!1
2I

W2
u2

2~x!2
4Ic

W
u1~x!u2~x!G 1/2

~4!

and the equation forf is integrated as

f~x!5arctanF S 1

2I
12Ic2DW

u1~x!

u2~x!
22IcG1arctan 2Ic,

~5!
©2002 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW E66, 037702 ~2002!
with f(s1)50. I andc are two integration constants that s
the boundary conditions of Eq.~3!. For quantized energie
E5E0, the accumulated phase is

b~E5E0!5np, ~6!

where n in an integer counting the number of hal
wavelengths betweens1 ands2. The eigenfunctions are the
properly normalized,

E
s1

s2
c2~x,E0!dx5I ]Eb~E0!5Ip]En, ~7!

wheren(E0) gives the functional relation between the num
ber of half-wavelengths and the energy. ForEÞE0 , b de-
pends on the boundary conditions,

b~EÞE0!5arctan~2Ic !1
~2n11!

2
p, ~8!

and a solution of Eq.~1! is improperly normalized as

E
r

s2
c2~x,E!dx5I ]Eb~E!5I @]E~2Ic !#~114I 2c2!21;

~9!

r is a cutoff radius, sincec diverges ats1, and thus improper
normalization is arbitrary, depending onI and c. It follows
from Eq. ~7! that I can take two meaningful values:I
5p21 if the eigenfunctions are energy normalized, orI
5(p]En)21 if the functions are unity normalized. We sha
assume energy normalization since it is the case most c
monly encountered in practice. The constantc is set by re-
quiring improper normalization to be defined, for anyE, by
the same functional dependence as forE5E0. This givesc
52p cotpn(E)/2 andb(E)5pn(E), wheren(E) is a real
~noninteger! number and the right hand side of Eq.~9! sim-
ply becomesIp]En.

NUMERICAL CONSTRUCTION OF NONOSCILLATING
AMPLITUDE FUNCTIONS

The starting point of the present method relies on
numerical integration of the independent solutionsu1 andu2
of the Schro¨dinger equation~1!. We chooseu1 andu2 to be
regular, respectively, ats1 and s2, so that u1(s1)50,
u2(s2)50. Numerical integration proceeds through any st
dard method~e.g., by Numerov-Cooley integration or by th
method of chasing! and we choose as the second bound
conditionu1(t1).0 andu2(t2).0, wheret1 and t2 are, re-
spectively, the inner and outer turning points.u2(x) is then
rescaled so that the Wronskian is set toW52 sinpn(E)/p
@indeed, ifu1 and u2 are, respectively, regular ats1 and s2
then we must haveuWu5u2I sinpn(E)u @14#; we then setI
5p21 and our sign convention accordingly#. At this point,
we have potentially constructed not one but a family of a
plitude functions given by Eq.~4!: the reason is that an
changeu1→u1 /b, u2→bu2, with b real, gives the same
Wronskian, but leads to different amplitude function
Hence, since I 5p21 and c
03770
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52p cotpn(E)/2 the different amplitude functions depen
on b through

a~x;b!5F p

2 sin2pn~E!
S u1

2~x!

b2
1b2u2

2~x!D
1

p cospn~E!

sin2pn~E!
u1~x!u2~x!G 1/2

. ~10!

Of course, varyingb is tantamount to constructing differen
amplitude functions from solutionsu1 andu2 having differ-
ent boundary conditions at the turning points, but this do
not concern us here:u1 andu2 are the numerically integrate
~and to a certain extent arbitrary! functions.

The crucial observation is that there is one value ofb,
denotedbo , for which a(x;bo) is the ‘‘optimal’’ amplitude
function.bo is obtained by imposing

]f

]b U
x5t2

2
]f

]bU
x5t1

50. ~11!

From Eq. ~5!, this condition—the extremalization of th
quantum phase between the classical turning points—ta
the form

bo
25Uu1~ t1!u1~ t2!

u2~ t1!u2~ t2!
U1/2

. ~12!

Hencebo is obtained by simply calculating the value of th
numerical functionsu1 andu2 at the classical turning points
a(x;bo) is the ‘‘optimal’’ nonoscillating amplitude function
and its integralf(x;bo) the corresponding ‘‘optimal’’ phase
function. By construction the accumulated phase
b(E)5pn(E), and the basis functionsf (x) and g(x) of
great use in scattering problems, given by$ f ,g%
5$A2Ia(x)sinf(x),A2Ia(x)cosf(x)% are normalized to
Ip]En ~in both expressions,I 5p21).

Example 1: Harmonic oscillator

We first illustrate our method on the harmonic oscillat
Herek2(x,E)52(E2x2/2), s152`, s251`. The relation
E05n11/2, wheren is the principal quantum number, i
inverted to getn(E)5E21/2, and the number of half
wavelengths isn(E)5n(E)11. As a working example, for
an energy corresponding ton(E)57.24, we have integrated
u1 and u2 with numerical values ofs1 and s2 set as three
times the turning points, and taking as second boundary c
ditions u1(t1)51 andu2(t2)51. We then divideu2(x) by
'27.879, so that the rescaledu2 gives a WronskianW
52 sin 8.24p/p; the optimal amplitude-phase functions a
then obtained forbo

2.7.88. We have plotted in Fig. 1 th
phase incrementf(t2 ;b)2f(t1 ;b) for different values ofb:
the phase accumulation between the turning points is see
have a minimum forb5bo .
2-2
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Example 2: Spherical harmonics

Phase amplitude methods for spherical harmonics h
seldom been developed~with the noteworthy exception o
Ref. @4#!. The usual equation for the associated Legen
function ]u@sinu]uPlm(u)#/sinu1@l(l11)2m2 sin22 u#Plm(u)
50 is put under the form

]u
2x lm~u!1klm

2 ~u!x lm~u!50, ~13!

with x lm(u)5Plm(u)sin1/2u and klm
2 (u)5( l 1 1

2 )22(m2

2 1
4 )/sin2 u. We haves150 and s25p, and the relation

E0( l )[L25 l ( l 11) is inverted to givel (E)5 1
2 (A114E

21). Following our recipe~and keeping to the more stan
dard notationl for the total angular momentum effectiv
quantum number, rather thann), the accumulated phase
now given byb(E)5pn(E), with n(E)5 l 2m11. Figure
2 displays rather than the amplitude the quantitya22(u;bo)
for l 513.7 andm56, which ascribes a total angular veloci
~whereas for an arbitrary value ofb, a(u) would display the
nodal structure of the wave function!. The pair of regular and

FIG. 1. The phase increment between the turning po
f(t2 ;b)2f(t1 ;b) for a harmonic oscillator withn57.24 is plotted
for different values ofb ~note the logarithmic scale!. The increment
has a minimum for the optimal phase function, withb5bo ~see
text!, and reaches the value of 8p for b→0 or ` ~whereas the tota
accumulated phase betweens1 ands2 is 8.24p). The increment for
the optimal phase function is not always a minimum, but can b
maximum as well, depending on the position of the zeros ofu2

relative to the turning points. However, the increme
f„t2(E),E;bo(E)…2f„t1(E),E;bo(E)… varies monotonically with
the energy@and linearly withn(E)#.

FIG. 2. The energy-normalized optimal functiona22(u;bo)
~smooth solid line, left scale! is plotted for l 513.7, m56. The
corresponding function regular ats150 ~see text! is represented by
the dashed curve~right scale!. The turning points are indicated o
the u axis. Atomic units~a.u.! are used.
03770
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irregular functions, corresponding toPlm(u) when l is
an integer, is then retrieved by the standard formulas.
regular function, given by f lm(u)
521/2(p sinu)21/2a lm(u)sinflm(u) is also shown on Fig. 2.

Note that whenm,221/2, which involves only a single
but important quantized case,m50, the effective potential
does not have a minimum~but a metastable maximum! and
our method cannot be applied since there are no turn
points. However, we may take advantage of the symmetr
the potential and its derivative aboutu5p/2; anyu,p/2 is
mapped top2u.p/2, and, in particular,s1 is mapped into
s2. Hence any couple of points (u,p2u) can play the role of
t1 and t2 in Eq. ~12!, and bo is accordingly obtained by
solving

bo
25Uu1~u!u1~p2u!

u2~u!u2~p2u!
U1/2

, ~14!

for any u. An example is shown in Fig. 3: we have plotte
there the difference between the optimal amplitu
21/2(p sinu)21/2a l0(u;bo) and the semiclassical amplitud
21/2(p sinu)21/2( l 1 1

2 )21/2. It can be seen that even for low
values ofl, the agreement is quite good.

Example 3: Coulomb potential

The centrifugal Coulomb potential problem has been
guably the main case study for amplitude-phase method
connection with short-range scattering in a long-range C
lomb field. Different methods@2–4,7–10# have been pro-
posed to minimize the oscillations of the amplitude a
phase functions, yielding satisfactory numerical results
practical computations. However, none of these methods
to a total suppressionof the oscillations. Our recipe provide
optimal amplitude and phase functions also in this case, p
vided Eq. ~12! is implemented not with the momentum
k(x,E,l )5A2@E2 l ( l 11)/(2x2)11/x#1/2 appearing in the
radial Schro¨dinger equation but with the modified wav
number

s

a

t

FIG. 3. D5(p sinu/2)21/2 @a l0(u;bo)2( l 11/2)21/2# is shown
for three values ofl: l 56 ~dotted line!, l 512 ~dashed line!, and l
522 ~solid line!. The difference between the optimal amplitud
function and the classical amplitude decreases asl increases. The
calculations were made by adding a small quantity«51026 to the
integer value ofl for convergence purposes.
2-3
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kd~x,E,l !521/2FE2
~ l 1d!2

2x2
1

1

xG 1/2

, ~15!

whered is a transformation parameter arising from the s
gularity atx50 which breaks the simple correspondence
tween the quantum wave number and the classical pote
@15#. Employing the well-known Langer modification (d
51/2) leads to nonoscillating functions for sufficiently larg
quantum numbers but a correction must be implemente
low energies. The ansatz

d~E,l !5
1

2
1

$~ l 11!/@2~ l 13!#%p ln( l 19/4)

F ~22E!21/22 l 2
1

2
1Al ~ l 11!G ( l 11)/2(l 13)

~16!

was seen to efficiently correctk(x,E,l ) when using Eq.~11!
even at low energies andl, and tends to the Langer modifie
momentum in the limitE→0 and/orl→`.

To be precise,u1 andu2 are generated from the numeric
integration of Eq.~1!, i.e., with the momentumk(x,E,l ), and
with numerical approximations tos150 ands251`. The
eigenvalue relationE0521/(2n2) is inverted to yield
n(E)5(22E)21/22 l . The corrected momentum only ente
in the calculation of the turning points, so thatt1 and t2 in
Eq. ~12! correspond to the solutions ofkd50, with d given
by Eq. ~16!. Note that the modified potentialkd has a mini-
mum for any positive value ofl, so our method can also b
applied tol 50. An illustration is given in Fig. 4.

DISCUSSION

Relative to an arbitrary phase function, the optimal ph
function fo(x,E) plays the role that the classical actio
S(x,E) hasvis-à-vis any other semiclassical phase functi
f̃o(x,E): S is indeed theonly nonoscillating semiclassica
phase function@14#. Our method generates optimal functio
by extremalizingfo(x,E) between two points related by
classicalmap; in this respect, we remark that quantum defe
theory was recently reinterpreted as the realization of an
act quantum Poincare´ map @16#. However, in most of the
methods given in Refs.@1–4,6–8,10,11#—which were not
able to totally eliminate the oscillations—classical mech
ics intruded in the choice of the quantum amplitude a
in
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phase functions, usually by using a classicalvalue as a
boundary condition on Eq.~3!. An improved and more effi-
cient method due to Sidky@9# used a combination of class
cal boundary conditions so as to minimize]x

2k(x,E)21/2,
which appears as a driving force in a linearized equation
the difference between an ‘‘ideal’’ amplitude function and t
classical amplitudek(x,E)21/2. For the harmonic oscillator
and the Coulomb potential cases, the Sidky method and
present recipe yield quasi-identical nonoscillating amplitu
phase functions; small differences were found only for sm
values ofn(E), as illustrated in Fig. 4. Another difference
that none of the other methods control the value of the ac
mulated phaseb(E) @which usually oscillates around the op
timal value pn(E)# whereas we impose through Eq.~8!
b(E)5pn(E) from the beginning. However, our method r
lies on integrating first the linear Eq.~1! rather than directly
integrating the nonlinear Eq.~3!, as in Ref.@9#; this may
prove to be a drawback when working with potentials th
extend to a very long range, as is the case for intramolec
potentials in cold atom collisions.

FIG. 4. Thefirst derivativeof the amplitude function for a cen
trifugal Coulomb potential (n518.76, l 516) is plotted in a region
around the bottom of the potential. The solid line results from f
lowing our prescription, whereas the dashed line almost superp
on the solid line has been calculated by employing the impro
classical boundary conditions as given in Ref.@9#. For only slightly
larger values ofn(E)5n2 l , both methods give the same nonosc
lating amplitude function. On the other hand, plain~WKB! classical
boundary conditions as used in@1,2# lead to oscillations, which are
small relative to the oscillations displayed by an arbitrary amplitu
function but are nevertheless clearly visible when plotting the fi
derivative~dotted line!.
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